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Abstract

A neutron star is the dense remnant of a supernova, when a medium-mass star
runs out of fuel, collapses, and explodes. The densities in the inner core can reach
few × 1015 g cm−3, while the magnetic fields in highly magnetized neutron stars
are of order 1 × 1015 G. Rotating neutron stars, which can have millisecond spin
periods, are observed when electromagnetic radiation beamed along their magnetic
axis sweeps across the earth in regular pulsations. The extreme densities and low
temperatures in mature neutron stars are thought to give rise to superfluid and
superconducting phases in the interior.

The superfluid in the core and inner crust mimics the solid-body rotation of the rigid,
outer crust by nucleating an array of quantised vortices. Neutron star glitches—
sudden, impulsive changes in the spin period— are commonly believed to occur,
when angular momentum is transferred suddenly from the star’s interior to the crust
by the collective unpinning and repinning of large numbers of superfluid vortices. In
general, the pinning potential associated with nuclei in the crustal lattice varies as a
function of radius. In Chapter 2, we explore vortex dynamics under these conditions
by solving the three-dimensional Gross-Pitaevskii equation in a rotating, harmonic
trap with an axisymmetric ‘moat’ of deeper pinning sites on an otherwise uniform,
corotating pinning grid. It is shown that vortices accumulate in the moat, inducing
large differential rotation which can trigger mass unpinning events. It is also shown
that the system self-adjusts, such that the net vortex flux out of the system is the
same with and without a moat, as the trap spins down, but the glitches are less
frequent and larger when the moat is present.

In binary systems, accretion drives nuclear reactions which deposit heat in the
crust. We study diffusive heat transport in an accreting neutron star with radially-
dependent thermal conductivity in Chapter 3. Low conductivity in the core is shown
to trigger steep temperature gradients which heat successively deeper layers and,
in some circumstances, deposit more energy in the core in the steady state than is
deposited for higher conductivities. In a superfluid, the temperature fluctuations
also obey a wave equation, and propagate convectively. In Chapter 4, we investigate
how the onset of superfluidity alters the inward transport of thermal energy. We
build a hydrodynamic model and find that diffusion tends to quench the convective
modes of the superfluid. It is shown that a mismatch in the thermal conductivities
of the crust and core gives rise to large velocities in the proton-electron fluid.
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Chapter 1

Introduction

Neutron stars are compact astronomical objects which are a possible end product of stellar
evolution. A compact object is born when a progenitor star has consumed most of its fuel
and can no longer generate sufficient thermal pressure to support itself against gravitational
collapse. If the progenitor is sufficiently massive (8 . M/M� . 60), it will explode in a core-
collapse supernova and expel the material of its outer layers (Shapiro & Teukolsky, 2004). The
object which is left behind is called a neutron star, and is believed to be supported against
further collapse by neutron degeneracy pressure.

Studying the neutron star interior gives unique insight into fundamental physics in extreme
conditions. The simultaneous unpinning of trillions of superfluid vortices is thought to cause
pulsar glitches, which we introduce in Section 1.3. Understanding the interactions between
nuclei and vortices in the crust of neutron stars, and their relation to vortex avalanches and
pulsar glitches, is the subject of Chapter 2. In binary systems, accretion triggers nuclear burning
on the neutron star surface. How is the thermal pulse transported into the interior, and how
does superfluidity in the core alter the diffusive conductivity of degenerate electrons? Thermal
transport in accreting binaries is studied in Chapters 3 and 4. In the remainder of this chapter,
we introduce the background necessary to explore these problems.

1.1 Neutron star composition

The Fermi energy of an electron gas in three-dimensions is εF ∝ n
2/3
e , so that εF is large as we

move deeper into the neutron star. Consequently, we have mp + me + εF > mn (where mn,
mp and me are the neutron, proton and electron masses respectively), and electron capture is
energetically favourable:

p+ e→ n+ ν. (1.1)

The result is that stellar interior is particularly neutron rich, with neutrons in the core alone
making up & 90% of the total mass (Link, 2003).

Observational data from thermonuclear X-ray bursts suggest neutron star radii in the range
10 . R/km . 13 (Coleman Miller & K. Lamb, 2016). The observed mass distribution peaks
at approximately 1.28 M� for neutron star-neutron star binaries, and 1.48 M�, for neutron
star-white dwarf systems (Özel et al., 2012). The most massive known neutron star is the
recently-observed PSR−J2215+5135 with M = 2.27+0.17

−0.15 M� (Linares et al., 2018). The internal
composition is stratified: a magnetosphere, atmosphere, outer and inner crust, and outer and
inner core, with densities ranging from 106 g cm−3 in the atmosphere to few × 1015 g cm−3 in
the inner cores of massive neutron stars (Shapiro & Teukolsky, 2004). The properties of each

1
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layer are as follows.

The atmosphere is thought to be a thin plasma of light elements (Romani, 1987), with a
magnetosphere consisting of charged particles corotating with the star (Shapiro & Teukolsky,
2004; Chamel et al., 2013). Although this stratum contains only a very small amount of the
star’s mass, it has a large effect on the emergent photon spectrum (Lattimer & Prakash, 2004).
The outer crust comprises a crystalline solid of heavy, neutron-rich nuclei and a degenerate,
relativistic electron gas (Pethick & Ravenhall, 1995). The transition to the inner crust occurs
at the neutron drip density ρ ≈ 4 × 1011g cm−3. Nuclei at these densities are so neutron
rich that the outermost occupied states become unbound, and neutrons ‘drip’ from nuclei
to form a neutron superfluid in the 1S0 pairing state (Pethick & Ravenhall, 1995; Chamel
et al., 2015). The outer core begins about 1 km from the surface and spans a density range
4.3×1011 . ρ/(g cm−3) . 1014 (Haensel et al., 2007). Neutrons in the outer core pair in the 3P2

state and superfluid protons form a type-II superconductor (Baym et al., 1969a; Gezerlis et al.,
2014). The inner core begins at a density of ρ ≈ 2ρ0 and is present only in massive neutron
stars (Shapiro & Teukolsky, 2004). Its composition is unknown. Suggestions include hyperons
(Gusakov et al., 2009), condensates of pions and kaons (Haensel et al., 2007), deconfined quark
matter (Glendenning, 1992), and color-superconducting phases (Bedaque & Schaefer, 2002;
Alford et al., 2008).

1.2 Introduction to superfluidity

Bosons, unlike fermions, have integer spin and do not obey the Pauli exclusion principle. This
has the consequence that, when cooled to near absolute-zero, a large number of particles in
a gas of weakly interacting bosons accumulate in the ground state (Pethick & Smith, 2008).
This state, described by a macroscopic quantum wavefunction Ψ, is known as a Bose-Einstein
condensate (BEC) and has several surprising and remarkable properties. These include irro-
tational flow with zero viscosity, divergent heat capacity, and formation of a quantised array
of microscopic vortices. Although 4He atoms are strongly interacting, they undergo a phase
transition when cooled below Tc = 2.17 K (at 1 atm) to a superfluid state which shares many of
the features of BECs (Pethick & Smith, 2008). Superfluid 4He was first observed by Kapitza
(1938) and Allen & Misener (1938), predating laboratory BECs by about six decades. In this
section we consider superfluidity in the context of both 4He and cold quantum gases, as well as
astrophysical neutron superfluids in neutron stars.

1.2.1 Vortices in rotating superfluids

The wavefunction Ψ which describes the collective behaviour of particles in a BEC is charac-
terised by a fluid density ρ and macroscopic phase S:

Ψ(x, t) =
√
ρ(x, t)eiS(x,t), (1.2)

with ρ, S ∈ R. The current density is given by

j(x, t) =
i~
2m

(
Ψ∗∇Ψ−Ψ∇Ψ∗

)

= ρ
( ~
m
∇S
)
,
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and the superfluid velocity is

v(x, t) = i~
(

Ψ∗∇Ψ−Ψ∇Ψ∗
)
/(2m|Ψ|2) (1.3)

=
~
m
∇S, (1.4)

where m = 2mn is the mass of a Cooper pair. It follows from Equation (1.4) that the velocity
field is irrotational:

∇× v = 0.

Since Ψ is single-valued, the change in phase around a closed loop must be an integer multiple
of 2π, so that ∮

∇S · dl = 2πl, (1.5)

where l is an integer. Using Equation (1.4), we obtain a quantisation condition for the circula-
tion Γ around a closed contour,

Γ =

∮
v · dl =

~
m

2πl, (1.6)

and define the quantum of circulation κ = 2π~/m. Note that the circulation vanishes for
any path enclosing a region which is simply connected. If the path encloses a zero of the
density field, however, the region is multiply connected and Γ 6= 0. This is the result that
angular momentum in a BEC is supported by defects in the superfluid topology which are
called vortices. A multiply-quantised (l > 1) vortex in a harmonically confined condensate
is energetically unfavourable, so that a rotating BEC supports an array of l singly-quantised
vortices (Shin et al., 2004).1

Because κ is of order 10−7 m2 s−1 for a neutron superfluid, the number of vortices in a rotating
neutron star is very large. For solid body rotation, v = Ω× r, where Ω and r are the angular
velocity and position perpendicular to the axis of rotation respectively, so that the circulation
per unit area is 2Ω. Comparing this to Equation (1.6), we find that the vortex number density
is

nv =
2Ω

κ
.

For a neutron star rotating at 100 Hz, nv ≈ 1 × 105 cm−2. We summarise the evidence for
superfluidity in neutron stars in Section 1.2.3.

1.2.2 Two-fluid theory and second sound

The two-fluid model developed by Landau (1941) is a hydrodynamic description of superfluid
4He. Landau treats the superfluid phase as a mixture of a viscous normal component (denoted
by the subscript n) and an inviscid superfluid component (denoted by s). The total density of
the fluid ρ is the sum of the temperature-dependent densities of the components, ρn and ρs, each
having a corresponding velocity field vn and vs. For T = 0 we have ρs/ρ = 1, while above the
superfluid transition temperature all of the density is in the normal component and ρs/ρ = 0.

1We exclude specific configurations of pinning forces designed to stabilise multiply-quantised vortices (Baert
et al., 1995), and rapidly rotated condensates where metastable ‘giant’ vortex cores have been observed (Engels
et al., 2003).
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The atoms in the superfluid component are in the ground state and have zero entropy, so that
entropy is carried only by the normal fluid.

The hydrodynamic equations which govern the two-fluid system can be linearised and written
in the form of two wave equations (Landau & Lifshitz, 1986):

∂2ρ/∂t2 = ∇2p, (1.7)

∂2s/∂t2 = (ρss
2/ρn)∇2T, (1.8)

where p is the pressure, T is the temperature, and s is the entropy per unit mass. Assuming
plane wave solutions, we obtain two expressions for the sound speed:

u2
1 = ∂ρ/∂p, u2

2 = Ts2ρs/(cvρn), (1.9)

where cv is the specific heat capacity. The expression for u1 gives the velocity of ordinary
sound waves: perturbations in the density, driven by pressure gradients. u2 on the other hand
corresponds to perturbations in the entropy, driven by temperature gradients. Because entropy
is carried only by the normal fluid, this implies local fluctuations in ρn. u2 is only non-zero
below Tc and is called the second sound speed.

The usual mechanism for the transport of thermal energy is diffusion. Diffusive heat transfer
is introduced in Section 1.4.1 and studied in detail in Chapter 3. The above discussion shows
that in a superfluid, the temperature may also propagate as a wave, leading to thermal effects
which differ greatly from those occurring in an ordinary fluid. We study the hydrodynamic
equations and thermal evolution of a superfluid in a neutron star in Chapter 4.

1.2.3 Evidence for superfluidity in neutron stars

The interior of neutron stars has long been thought to contain a superfluid phase (Migdal,
1959; Ginzburg & Kirzhnits, 1965). The principal motivation for this is the fact that, in all
but the youngest neutron stars, the temperature T . 0.1MeV is significantly lower than the
critical temperature for the onset of 1S0 neutron pairing at densities typical in neutron star
inner crusts, thought to be Tcn ≈ 1 Mev (Shapiro & Teukolsky, 2004; Gezerlis et al., 2014; Ding
et al., 2016; Chamel, 2017). The critical temperature for 3P2 pairing, expected to occur in the
core, is less certain, with predictions in the range 0.01 . T/MeV . 0.1 (Dong et al., 2013;
Ding et al., 2016). The strong non-linearity of the pairing interaction complicates calculations
of Tcn. Regardless of its exact value, cooling simulations suggest that neutron stars typically
drop below the critical temperatures for neutron and proton superfluidity within ≈ 10 − 102

years (Chamel, 2017).

Further evidence for superfluidity in neutron stars comes from observations of the neutron
star spin period P . The spin period of rapidly rotating neutron stars, known as pulsars, is
ordinarily extremely stable, having time variation dP/dt of order 10−21 – smaller than the most
precise atomic clocks (Hinkley et al., 2013). This is due to the large moment of inertia, which
is of order 1045 g cm2 (Haskell & Melatos, 2015). However, pulsars exhibit sudden, spasmodic
spin-up events—known as glitches—in which their rotational frequency Ω jumps by an amount
∆Ω/Ω ≈ 10−11 − 10−5 over less than a day, before relaxing slowly (over days to years) to its
extrapolated pre-glitch value (Chamel, 2017; Fuentes et al., 2017). Understanding glitches is a
key area of neutron star research, but they are commonly thought to be caused by the dynamics
of pinned superfluid vortices (see Haskell & Melatos, 2015, for a review of glitch models). We
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explain this mechanism in the next section. A weakly coupled, inviscid superfluid in the interior
of the star also explains the long relaxation times observed after some glitches, even if glitches
are caused by starquakes or some other mechanism (Baym et al., 1969b).

Recent observations of the surface temperature of the cooling supernova remnant Cassiopeia A
provide further support for superfluidity in neutron stars. The rapid decline in temperature—
4% over a period of a decade—places strong constraints on possible cooling mechanisms, and
is well explained by neutrino emission due to the Cooper pair formation in the core (Page
et al., 2011; Shternin et al., 2011). Transiently accreting neutron stars with short thermal
relaxation times have also been observed in a number of systems (Shternin et al., 2007; Brown
& Cumming, 2009). This is consistent with the presence of superfluid neutrons, whose strongly
reduced heat capacity implies much faster thermal equilibration (Chamel, 2017). The thermal
evolution of accreting neutron stars is introduced in Section 1.4 and studied in Chapters 3 and
4.

1.3 Vortex pinning and pulsar glitches

1.3.1 Neutron star inner crust

The standard composition of the inner crust of a neutron star is a lattice of nuclei immersed
in a sea of superfluid neutrons and degenerate electrons (Baym et al., 1971). As we note in
Section 1.2.1, the superfluid nucleates vortices as the star rotates. For the densities found in
the inner crust (4 × 1011 . ρ/(g cm−3) . 1014), first principles calculations suggest vortices
pin at or between nuclei in the lattice (Chamel & Haensel, 2008; Avogadro et al., 2008). The
nature of this interaction has generally been evaluated by computing the free energies of various
static configurations – typically a vortex superposed on a nucleus, and a vortex and a nucleus
separated by an infinite distance (Avogadro et al., 2008; Epstein & Baym, 1988; Gandolfi et al.,
2015). However, the difficulty inherent to this approach is that it involves subtracting two large
energies—of order 104 MeV—to compute a quantity which is of order 1 MeV. The high level
of accuracy required in this calculation means that even the sign of the interaction (which is a
complicated function of the density) is still uncertain (Wlaz lowski et al., 2016).

We discuss the details of the microscopic pinning energy further in Section 1.3.2, but the general
upshot is as follows. As the star spins down, vortex pinning prevents the superfluid from
decelerating with the crust, generating a rotational shear. When the shear reaches a critical
value, vortices unpin and transfer their angular momentum to the crust, causing a spasmodic
increase in the star’s rotational frequency known as a glitch (Anderson & Itoh, 1975). Many
(typically 107 − 1015) vortices unpin simultaneously, triggered by various collective knock-on
mechanisms (Warszawski et al., 2012). In the absence of pinning, vortex-vortex repulsion
(due to the Bernoulli force) is optimized in a triangular Abrikosov lattice (Tkachenko, 1966).
The addition of pinning sites distorts this configuration, as vortices self-organize to balance
competition between inter-vortex repulsion and attractive or repulsive pinning interactions.
The equilibrium is frustrated in general. Frustrated systems have been studied in the context
of terrestrial BECs by superposing a corotating square optical lattice on a triangular vortex
lattice (Tung et al., 2006). In the astrophysical context it has been shown that frustration due
to vortex-flux-tube pinning in a neutron star’s outer core leads to superfluid turbulence and
microscopic vortex tangles (Drummond & Melatos, 2017, 2018).
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Table 1.1: Pinning energy Ep calculated by various authors for different mass densities ρ. Note that
Ep is not a monotonic function of density: the end points of the density range do not correspond to
the extrema of Ep. Sign convention: Ep > 0 for nuclear pinning, Ep < 0 for interstitial pinning.

Authors ρ (1013 g cm−3) Ep (MeV) Potential
Alpar et al. (1984a) [3, 13] [0.5, 3]
Epstein & Baym (1988) [0.07, 12.6] [−2.5, 15]
Donati & Pizzochero (2006) [0.15, 13] [−0.81, 3.38]
Avogadro et al. (2008) [0.17, 6.2] [−6.21, 5.03] Skyrme force SLy4

[0.17, 6.36] [−18.27, 3.85] Skyrme force SkM

1.3.2 Calculations of the pinning energy

The radius and spacing of nuclei in the lattice and the sign of the vortex-lattice interaction
depend on density, leading naturally to the suggestion that the strength of pinning varies
between different regions of the crust (Negele & Vautherin, 1973; Alpar, 1977; Alpar et al.,
1984a; Donati & Pizzochero, 2004, 2006). Until recently, calculations of the vortex-lattice
interaction have been semi-classical, based either on Ginzburg-Landau theory (Epstein & Baym,
1988) or the Thomas-Fermi ansatz in the local density approximation (Donati & Pizzochero,
2004, 2006). Lately calculations have also been done using Hartree-Fock-Bogoliubov mean-field
theory (Avogadro et al., 2007, 2008), focusing on mesoscopic interactions between a vortex and
many pinning sites rather than computing the microscopic force per pinning site (Seveso et al.,
2016).

We define the pinning energy Ep as the energy difference between the non-interacting configu-
ration (where the vortex-nucleus separation is large) and the zero-distance configuration (where
the vortex core coincides with a nucleus). Positive Ep means that vortex-nucleus pinning is
energetically favourable, while negative Ep favors interstitial pinning, which maximizes vortex-
nucleus separation. A third possibility occurs when a vortex core is larger than a Wigner-Seitz
cell in the nuclear lattice, so that the distinction between nuclear and interstitial pinning breaks
down (Donati & Pizzochero, 2006).

Table 1.1 presents values of Ep for different densities calculated by various investigators under
conditions relevant to a neutron star. Certain calculations minimize the Ginzburg-Landau free-
energy functional (Epstein & Baym, 1988). This approach assumes temperatures close to the
superfluid transition (T ≈ 0.5 MeV) and is therefore inapplicable to the inner crust of a mature
neutron star with T ≈ 0.01 MeV (Donati & Pizzochero, 2004). In the latter regime the local
density approximation gives reasonable values for quantities integrated over a Wigner-Seitz cell.
Realistic density profiles for nuclei are incorporated via Woods-Saxon potentials.

Chamel et al. (2007) compared the Wigner-Seitz approximation to a full band theoretic model of
dense neutron star matter. They found that the Wigner-Seitz approximation is accurate at the
higher temperatures of young neutron stars and during core-collapse supernovae but it breaks
down at lower temperatures (T . 0.1 MeV), where entrainment becomes important. These
results are extended by calculations of the pinning potential per unit length of the vortex which
take into account the rigidity of the vortex and the fact that it interacts with a lattice (Seveso
et al., 2016; Wlaz lowski et al., 2016). Seveso et al. (2016) found weaker pinning compared to
calculations involving a single pinning site but concluded that the largest pinning forces are
still sufficient to store enough angular momentum in the crust to explain large glitches, such
as those observed in the Vela pulsar. Simulations by Wlaz lowski et al. (2016) show that the
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pinning force is repulsive (resulting in interstitial pinning), and that its magnitude increases
with density in the range 1.4× 1013 < ρ/(g cm−3) < 3.1× 1013.

The pinning strength is in general a non-monotonic function of density and hence of radius.
Alpar et al. (1984a) found (Table 1.1) that Ep grows with increasing density to a maximum of
3 MeV at ≈ 7× 1013 g cm−3 and falls off at the base of the inner crust. Epstein & Baym (1988)
reported a larger Ep range, with the extrema (−8.2 MeV and 15 MeV) both lying towards the
middle of the density range, and weaker pinning at the top and bottom of the inner crust.
Donati & Pizzochero (2006) found significant nuclear pinning (2.5 < Ep/MeV < 3.5) only in
the layer 2× 1013 < ρ/(g cm−3) < 5× 1013, with negligible pinning elsewhere. The presence of
Ep extrema in the inner crust motivates the study in Chapter 2 of collective vortex motion in
the situation where local pinning takes a higher value in an annular ‘moat’.

1.4 Accreting neutron stars

The Milky Way contains about 200 known bright X-ray sources, the first of which, Scorpius X-
1, was detected in 1962 (Giacconi et al., 1962). It was suggested soon after that the signal from
Scorpius X-1 was caused by mass accretion onto a binary neutron star or black hole (Zeldovich
& Guseynov, 1966). Strong evidence for this hypothesis came with the discovery that another
galactic X-ray source, Centaurus X-3, was pulsing at regular intervals of 4.84 s (Giacconi et al.,
1971). The next year Schreier et al. (1972) confirmed that the system was a binary, followed
quickly by theoretical work demonstrating that Centaurus X-3 and a third source, Hercules
X-1, were in fact accretion-powered pulsars (Tananbaum et al., 1972).

A low-mass X-ray binary (LMXB) is a system in which matter is transfered onto a neutron
star or black hole from a low-mass (Mdonor ≤ M�) companion star (Liu et al., 2007). Orbital
periods in LMXBs are short (typically of the order of minutes or hours), indicating a large loss
of angular momentum from the system at some point in the past (Tauris & van den Heuvel,
2006). This is explained by the concept of common envelope evolution, whereby the compact
body’s orbit takes it through the envelope of its giant companion star, resulting in losses from
friction and a shrinking of the orbital radius (Ostriker, 1976). Accretion may be persistent
or transient, with mean accretion rates 〈Ṁ〉 typically between 10−14 and 10−9 M� yr−1. A
transiently accreting neutron star is expected to be in a quasi-stationary state which is largely
insensitive to the precise value of 〈Ṁ〉 (Yakovlev et al., 2005).

1.4.1 Crustal heating

There are two heat sources in the outer strata of accreting neutron stars. The first is due
to thermonuclear burning of hydrogen in the upper atmosphere (Brown et al., 1998). The
energy produced is predominately radiated away, with only a small fraction propagating inwards
and heating the core (Fujimoto et al., 1987). The second heat source occurs deep in the
crust. During accretion, material in the crust is forced inwards and compacted, driving electron
capture. The increasingly neutron-rich nuclei eventually fuse in density-driven pycnonuclear
reactions and deposit heat in the crust which diffuses inwards, heating the core and driving
it out of thermal equilibrium (Rutledge et al., 2002; Yakovlev et al., 2005). If accretion is
sufficiently rapid, neutrino emission is initiated which balances the inward heat flux (Brown
et al., 1998).
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Table 1.2: Thermal conductivity κ and heat capacity Cp calculated by various authors, for different
mass densities ρ and T = 108 K.

Authors log ρ (g cm−3) log κ (erg s−1 cm−1 K−1)
Potekhin et al. (2015) [3.8, 10] [14, 16.5]

Shternin & Yakovlev (2006) [9.4, 14] [19.7, 23]
Gnedin et al. (2001) [10, 15] [18, 25.6]

logCp (erg s−1 cm−3)
Gnedin et al. (2001) [9, 15] [16, 20]

Brown et al. (1998) have proposed that in the case of transient accretion it may be possible
to probe properties of the neutron star crust by observing the cooling light curve—that is, the
time evolution of the photon luminosity—after the cessation of accretion as the crust relaxes
thermally (see also Ushomirsky & Rutledge, 2001; Colpi et al., 2001; Wijnands et al., 2005).
The light curve is sensitive at different times to the conductivity at different depths, so that
this technique offers the possibility of probing various density regimes (Horowitz et al., 2015).
The material in the crust is completely replaced over the accretion lifetime of an LMXB, so
that these properties may differ significantly from those of an isolated neutron star (Brown &
Cumming, 2009).

In order to learn about the properties of the stellar interior, observations of the light curve are
compared to theoretical models. In general this is done by assuming an equation of state for
dense matter and solving the relativistic equations for the thermal evolution of a neutron star
interior (Thorne, 1977):

1

4πr2e2φ

(
1− 2Gm

c2r

)1/2 ∂

∂r
(e2φLr) = −Qv −

Cv
eφ
∂T

∂t
, and (1.10)

−κ
(

1− 2Gm

c2r

)1/2

e−φ
∂

∂r
(Teφ) =

Lr
4πr2

. (1.11)

Here Qv is the neutrino emissivity, Cv is the specific heat capacity and κ is the thermal con-
ductivity. Lr is non-neutrino, thermal luminosity, and gravitational effects are included by the
mass m(r) and metric function φ(r). In the inner crust the conductivity has radiative and
diffusive components, the latter due to electron-electron and electron-ion scattering, and scat-
tering of free neutrons by electrons and ions (neutron-neutron collision rates are small and can
be ignored) (Chamel & Haensel, 2008; Potekhin et al., 2015); Table 1.2 summarises values for κ
and Cv calculated by various authors for a range of densities and T = 108 K. These scattering
processes imply that κ is a strong function of the impurity parameter,

Qimp ≡ n−1
ion

∑

i

ni(Zi − 〈Z〉)2,

which characterises the distribution of nuclei charge (Itoh & Kohyama, 1994). Calculations by
Aguilera et al. (2009) show that conduction by superfluid phonons is important if either the
magnetic field strength is large, or temperatures exceed T ≈ 108 K. LMXBs are expected to
be weakly magnetised (see Bhattacharya, 1995, for a review), but can achieve T ≈ 8 × 108 K
when the accretion rate and Qimp are both large (Brown, 2000).

Equations (1.10) and (1.11) have been studied by many authors (Brown & Bildsten, 1998;
Gnedin et al., 2001; Yakovlev et al., 2001; Brown & Cumming, 2009; Viganó et al., 2013;
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Lim et al., 2017). If gravitational effects are ignored [m(r) = φ(r) = 0], we recover the one-
dimensional heat equation. We study the heat equation for a spherically symmetric neutron
star in Chapter 3.

1.4.2 Observations of transient LMXBs

The thermal properties of cooling X-ray transients have been investigated by various authors.
Shternin et al. (2007) confirm that the observed light curve of KS 1731− 260 can be explained
by a large deposition of heat in the crust during the extended (& 12.5 yr) accretion period.
Their model implies a thin, superfluid crust, and rules out the amorphous, low conductivity
crust proposed by Brown (2000). These results are confirmed by Brown & Cumming (2009),
who constrain Qimp < 10 for the neutron stars KS 1731−260 and MXB 1659−29. On the other
hand, Horowitz et al. (2015) find that a large Qimp (of order 40) produces late time cooling
which agrees with more recent Chandra observations of MXB 1659− 29. Recently Deibel et al.
(2016) have found that the late time cooling is consistent with a shell of low-conductivity,
amorphous nuclei known as nuclear ‘pasta’ at the base of the crust.

Brown et al. (2018) use repeated observations of the cooling crust to estimate the energy
deposited in the core of MXB 1659 − 29 during ≈ 2.5 years of accretion. From this they
infer the core temperature and place constraints on neutrino cooling. Observations of cooling
transients have also been used to place a lower limit on the heat capacity of the core, ruling out
a quark color-flavor-locked phase (Cumming et al., 2017). The very slow cooling of the pulsar
IGR J17480 − 2446 is difficult to explain with current models, and may point to continued,
low-level accretion or unusual (but currently unknown) crust properties (Degenaar et al., 2013).

1.5 Project synopsis

The remainder of this thesis is structured as follows.

• In Chapter 2, we study vortex pinning and dynamics, and their effect on glitch size and
waiting time statistics.

• Diffusive heat transfer in a stratified neutron star is studied in Chapter 3.

• The study of diffusive conductivity in Chapter 3 is extended in Chapter 4, where we build a
two-component hydrodynamic model and study the wave-like propagation of temperature
in a superfluid.

• In Chapter 5 we briefly summarise our key results and consider future work.



Chapter 2

Collective vortex dynamics

In this chapter we study collective vortex motion and pinning in a neutron star where a ring-like
barrier (‘moat’) of deeper pinning sites at some fixed radius is superposed on a uniform lattice.
The aim is to simulate, in an idealized fashion, the density-dependent, stratified pinning in
a neutron star proposed by previous authors (see Section 1.3.2 and references therein). The
central physical question is: does the moat present a heightened barrier to outward vortex
motion, as the star spins down? Or does the vortex array self-adjust to nullify the moat,
i.e. do vortices pin preferentially in the moat, increasing the Magnus force locally and thereby
lowering the barrier? If self-adjustment occurs, is it complete, or does the moat leave an imprint
on vortex motion and glitch statistics?

The chapter is organized as follows. We build an idealized Gross-Pitaevskii model of a de-
celerating, pinned BEC and study outward vortex drift and vortex avalanche dynamics with
and without a moat. In Section 2.1 we describe the Gross-Pitaevskii model. In Section 2.2 we
compute the density and velocity fields for representative configurations, with and without a
moat, in equilibrium. Section 2.3 compares the outward vortex flux for moats of various depths,
as the trap spins down. It is shown that large differential rotation can develop in the vicinity
of the moat, and that the vortex array self-adjusts such that the outward vortex flux is approx-
imately unchanged compared to when the moat is absent. In Section 2.4 we present evidence
of glitches in the simulations and calculate their size and waiting-time statistics, generalizing
previous studies without a moat.

2.1 Gross-Pitaevskii model

Following previous work (Warszawski & Melatos, 2011; Warszawski et al., 2012; Melatos et al.,
2015; Drummond & Melatos, 2017, 2018), we study vortex pinning in a neutron star compu-
tationally by modelling the system as a weakly interacting BEC in a rotating, decelerating,
harmonic trap and solving the time-dependent Gross-Pitaevskii equation (GPE) on a three-
dimensional grid (see Simula et al. (2008) and Schneider et al. (2006) for numerical details).
There are many reasons why this model is highly idealized. For example, the ratio of pinning
sites to vortices in our simulations is of order 10, rather than 1010 in a neutron star, the neutron
superfluid in a neutron star is not a dilute gas, and so on, as discussed in Haskell & Melatos
(2015) and Section 7 in Drummond & Melatos (2018). However, the model is computationally
tractable and has a successful record of capturing the collective knock-on processes which cause
the scale-invariant behaviour of superfluid vortex avalanches under neutron star conditions
(Warszawski & Melatos, 2011; Warszawski et al., 2012; Warszawski & Melatos, 2012, 2013).

In the frame corotating with the trap, at angular velocity Ω, the condensate order parameter

10
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Figure 2.1: Harmonic trap and
pinning potential as a function of
radius r with Vtrap = 0.5(x2+y2+
βz2), β = 32 (‘pancake’ geome-
try), V0 = 200, V1 = 20, ξ = 1.6,
and a0 = 0.4. The moat is cen-
tred on the vertical gray line at
R = 7.

Ψ(r, t) is described by the dimensionless stochastic GPE (Gardiner et al., 2002),

(i− γ)
∂Ψ

∂t
= −1

2
∇2Ψ +

(
V + |Ψ|2

)
Ψ− ΩL̂zΨ + iγµΨ. (2.1)

Here µ is the chemical potential, and the term −γ∂Ψ/∂t (γ ∝ T ) models dissipation of sound
waves by a viscous thermal cloud; see Warszawski & Melatos (2011) for details. Decreasing γ
increases the decay timescale of acoustic pulses emitted by moving vortices, which can unpin
further vortices and trigger avalanches (Warszawski et al., 2012). We take γ = 0.1. Note that
Ψ is normalized such that the total number of bosons, N0, equals

∫
d3r |Ψ(r, t)|2. Length, time

and energy in (2.1) are given in units of ~/(mñ0g)1/2, ~/(ñ0g) and ñ0g respectively, where g is
the boson coupling constant and ñ0 is the mean boson density.

The angular velocity of the trap is updated self-consistently from one time-step to the next
according to

Ic
dΩ

dt
= −d〈L̂z〉

dt
+Next, (2.2)

where Ic is the moment of inertia of the crust, Next is the braking torque (of electromagnetic
origin in a neutron star), and 〈L̂z〉 = 〈Ψ|L̂z|Ψ〉 is the expectation value of the angular momen-
tum of the condensate, which responds to changes in vortex positions. We take Next = −0.005
(dimensionless).

In the corotating frame there is a regular periodic lattice of pinning sites representing the crust.
The pinning potential Vpin increases to a maximum at a fixed radius r = R:

Vpin =
{
V1 + V0 exp

[
− 1

ξ2

(√
x2 + y2 −R

)2
]}

cos

(
πx

a0

)
cos

(
πy

a0

)
. (2.3)

In (2.3), V0 and V1 (both positive) are constants setting the strength of the pinning, and a0

and ξ set the lattice separation and width of the moat respectively. In (2.1), the potential is
V = Vtrap +Vpin, where Vtrap is the harmonic trapping potential which confines the condensate,
and the depth of the moat is controlled by the ratio V0/V1. Figure 2.1 shows a representative
example of V versus r; Vtrap is specified in the caption.
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Table 2.1: Number of vortices Nvort inside (|r−R| < ξ) and outside (|r−R| > ξ) moats of different
widths. The vortex overdensity (final column) is defined as [nvort(|r − R| < ξ) − n̄vort]/n̄vort, where
nvort is the local vortex density (number of vortices per unit area) and n̄vort is nvort spatially averaged
over the whole condensate. Parameters: t = 1.0, V0/V1 = 10, a0 = 0.4.

ξ/a0 Nvort(|r −R| < ξ) Nvort(|r −R| > ξ) Overdensity
1.58 24 61 2.16

2 16 62 0.85
3 16 63 0.21
4 32 47 0.78

2.2 Representative equilibrium with a moat

2.2.1 Circulation and vortex pattern

We now test how the moat modifies the equilibrium configuration of the vortex array. The
system is driven firstly to its ground state by propagating in imaginary time (t→ it) with zero
spin down. We then propagate the ground-state wavefunction in real time with non-zero spin
down, and examine the configuration at a relatively early time, t = 5.0.

Figure 2.2 plots the condensate density |Ψ|2 without (left panel) and with (right panel) a moat
at R = 7 with V0/V1 = 10. Dark blue spots in the condensate are vortices. In the left panel the
density decreases away from the axis. In the right panel the condensate ‘pools’ in the moat:
the maximum of |Ψ|2 lies in the region |r−R| < ξ. This is a result of the pinning potential; the
same effect is present with zero rotation and spin down. Figure 2.3 plots the cumulative number
of vortices enclosed within a radius r =

√
x2 + y2, when there is no moat, and when the moat

is centred at R = 7 and R = 10. Let the radial distance of the i-th vortex from the origin be
denoted by ri. For R = 7, we have 2.23 ≤ r1, . . . , r8 ≤ 3.90, then a plateau in the graph until
6.78 ≤ r9, . . . , r36 ≤ 7.69. Note that r36 − r9 = 0.91 is of order the moat width ≈ ξ = 0.63.
The remaining vortices, which have ri > R + ξ, lie in the range 11.90 ≤ r37, . . . , r86 ≤ 14.15.
For R = 10, we have 2.30 ≤ r1, . . . , r28 ≤ 7.59 and 9.13 ≤ r29, . . . , r64 ≤ 10.93, so that
approximately 42% of vortices are pinned within |r − R| < 2 of the centre of the moat. The
remaining vortices lie in the range 11.90 ≤ r65, . . . , r84 ≤ 13.39. In both cases, a large number
of vortices are pinned in the vicinity of the moat.

Table 2.1 shows the number of vortices pinned in moats of the same depth but different widths.
Wider moats do not necessarily pin more vortices than narrower moats of the same depth.
However, in all cases the vortex overdensity in the moat, which we define as [nvort(|r − R| <
ξ)− n̄vort]/n̄vort where nvort is the local vortex density and n̄vort is the spatially averaged nvort,
is greater than zero, indicating a greater concentration of vortices in the moat relative to the
mean.

The above observations suggest, that the circulation of the fluid (which is proportional to the
number of vortices enclosed within radius r) is low for r < R − ξ and high for r > R + ξ. We
test this by computing the local fluid velocity

v = −i~(Ψ∗∇Ψ−Ψ∇Ψ∗)/(2m|Ψ|2). (2.4)

Figure 2.4a shows a contour plot of the magnitude of the azimuthal velocity component, |vφ|.
A large number of vortices (identified by red spots, where the fluid velocity is high) are pinned
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Figure 2.2: Condensate density |Ψ|2(x, y) (in arbitrary units) without (left panel) and with (right
panel) a moat at t = 5.0. Blue (red) represents low (high) density. Dark blue spots are vortices.
Parameters: same as Figure 2.1.
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near the moat at R = 7. This causes a large change in the velocity field: the low (blue) values
inside the moat increase rapidly for r & R. The range of velocities represented in the figure
is 0 to 2.25% of |vφ|max: all pixels with |vφ| ≥ 0.0225|vφ|max are assigned the same (dark red)
color. This is necessary to maintain contrast between pixels which are far from a vortex core
because the velocity field diverges inversely with distance from a vortex.

Figure 2.4b plots flow variables of the condensate versus r, averaged over φ. The top panel
plots the condensate number density n0 = |Ψ|2, which has a local maximum in the vicinity of
the moat, seen also in the right panel of Figure 2.2. The middle and bottom panels show |vφ|
and the azimuthal current density |jφ| = |Ψ|2|vφ| respectively. As |Ψ|2 takes particularly high
values in the moat, we plot both |jφ| and |vφ| in order to verify that the local increase in |jφ|
near the moat is not just due to |Ψ|2 being higher there. This is important because the Magnus
force, which triggers unpinning, is proportional to |vφ| not |jφ|.

Let the relative change in a flow variable X in the vicinity of the moat be defined as

|∆X|
X

=
max[X(|r −R| < ξ)]−min[X(|r −R| < ξ)]

X̄(|r −R| < ξ)
, (2.5)

where the overbar indicates a spatial average over values of X in the region |r − R| < ξ, and
min( · · · ) [max( · · · )] indicates we select the minimum (maximum) value of X in |r − R| < ξ.
Referring again to Figure 2.4, we find |∆n0|/n0 = 0.36, 0.11 and |∆jφ|/jφ = 0.75, 0.11 with
and without a moat respectively: larger relative changes occur in n0 and jφ where there is a
moat. Additionally, we find |∆vφ|/vφ = 0.87 and 0.20 with and without a moat. Hence the
mass current due to the moat is higher not only because |Ψ|2 takes a higher value there; |vφ| is
also higher.

2.2.2 Moat depth

In this section, we study how varying the depth of the moat, V0, affects the vortex configuration
in equilibrium. Figure 2.5 shows |vφ(r)| averaged over circles of constant radius for moats of
various depths, with R = 7 and 5 ≤ V0/V1 ≤ 10. The figure shows an increase in |vφ| across
the moat, with |∆vφ|/vφ = 1.13, 1.09, 0.87 for V0/V1 = 5, 7, 10 respectively, compared to
|∆vφ|/vφ = 0.20 for V0 = 0. Every simulated moat produces a larger fractional increase in vφ
than no moat, but the fractional increase is larger for shallower moats for 5 ≤ V0/V1 ≤ 10.

An alternative way to quantify the increase in |vφ| across the moat is to smooth |vφ| with a
Savitsky-Golay (low-pass) filter of window size 0.85 and take the gradient of the smoothed
function at r = R. We find d|vφ|/dr = 0.06, 0.15, 0.17 for V0/V1 = 5, 7, 10 respectively,
and d|vφ|/dr = −0.003 for V0 = 0. According to this measure, deeper moats cause a steeper
change in vφ. The results for both |∆vφ|/vφ and d|vφ|/dr are summarized in Table 2.2. The
gradient indicates that the differential rotation and associated Magnus force are high. This is
reminiscent of the ‘snowplow’ model for giant Vela-like pulsar glitches, where a vortex sheet
is initially pushed outwards, then released at the maximum of the density-dependent pinning
force per unit length (Pizzochero, 2011). In Section 2.4, we explore the dynamical implications
by searching for glitches and quantifying their statistics.

The effect of a glitch is to correct accumulated stresses by transferring angular momentum
to the crust. Hence a third way to quantify the effect of a moat is to compute the angular
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Figure 2.4: Flow variables versus r with and without a moat at R = 7. Left panel: Contour plot of
the magnitude of the azimuthal condensate velocity |vφ| with a moat. The range of values represented
in the contour plot is 0 to 2.25% of |vφ|max; the numbers on the colorbar indicate a percentage of

|vφ|max. Right panel, top to bottom: number density n0 = |Ψ|2, φ̂ component of velocity |vφ| and

φ̂ component of mass current |Ψ|2|vφ|, as functions of radial distance r from the rotation axis and
averaged over φ with (blue) and without (green) a moat. Parameters: t = 2.5, V0/V1 = 10, ξ = 0.63,
a0 = 0.4.

Table 2.2: Two measures of the effect of moat depth V0 on the azimuthal velocity gradient in the
moat: |∆vφ|/vφ and d|vφ|/dr (dimensionless) (defined in text). Parameters: same as Figure 2.4.

V0/V1 |∆vφ|/vφ d|vφ|/dr
0 0.21 −0.003
5 1.13 0.06
7 1.09 0.15
10 0.87 0.17
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Figure 2.5: The azimuthal component of velocity |vφ| (averaged over a circle) versus radius for moats
of differing depth with R = 7 (vertical gray line). V0/V1 quantifies the strength of pinning in the moat
relative to the lattice, as defined in Section 2.1. The data has been smoothed with a Savitsky-Golay
(low-pass) filter of window size 0.85 to aid readability. Parameters: same as Figure 2.4.

momentum. The total angular momentum of a system of vortices is given by (Fetter, 1965)

L = πñ0~
∑

i

(Y 2 − r2
i ), (2.6)

where Y is the side length of the simulation box in the x and y directions and i labels each
vortex. Since the pinning potential affects the spatial distribution of vortices (Figure 2.3, Table
2.1) and hence ri in (2.6), we expect that a moat should alter the L.

We define the ‘excess’ contribution to angular momentum from vortices outside the moat as

Lex = L(ri > R)− LNM(ri > R), (2.7)

where the subscript NM denotes the no-moat system (V0 = 0), and ri > R indicates that
we include in L only those vortices with ri > R. The results for R = 5, 10 and V0/V1 =
20, 10, 5, 2.5 are shown in Table 2.3. We expect the numbers in Table 2.3 to decrease down
each column (deeper moats build up greater stresses) but remain positive (any moat builds up
more stress than no moat). By and large these expectations hold except for two anomalous
data points (both in the R = 5 column). However, looking at a single time-step is insufficient
here for the following reason. Suppose that we calculate Lex at some time t = tc, and that in
one simulation with large V0/V1 a glitch occurred just prior to tc, while in another simulation
with small V0/V1 the most recent glitch was significantly earlier than tc. A glitch corrects the
build-up of Lex. Hence Lex may be larger in the latter simulation despite the shallower moat:
we compared the two simulations at different points in their cycle of building up and correcting,
via glitches, stress. We study glitches further in Sections 2.3 and 2.4.
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Table 2.3: Angular momentum induced by vortices outside the moat: Lex in units of πñ0~ [defined
by Equations (2.6) and (2.7)] for moats of various depths V0/V1. Parameters: t = 1.0, ξ = 0.32,
a0 = 1.

V0/V1 Lex(R = 5) Lex(R = 10)
20 163.1 326.6
10 177.2 179.3
5 121.6 119.5
5/2 -21.7 4.8
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tices versus time without pinning
(blue curve; V0 = V1 = 0), and
with a moat but no lattice (green
curve; V0 6= 0, V1 = 0). Pa-
rameters: Vpin = 0 (blue curve);
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2.3 Outward vortex flux during spin down

This section looks at the effect of a moat on the spin down of the container. The motivation
is partly astrophysical: we wish to know how a shell of stronger pinning affects the long-term
deceleration of a neutron star’s crust, even though it may be hard to disentangle from other
spin-down effects in practice. We find in Section 2.2 that as vortices move radially outwards,
they pin in the vicinity of the moat (Figure 2.3). In this respect, the moat acts like a divot
or hole on a surface on which a sandpile is forming. Once some critical number of vortices pin
near the moat (analogously, once the hole is filled with sand), the question becomes whether
the outward vortex flux is the same as without a moat, or whether the flux is altered, retaining
an imprint of the moat.

Figure 2.6 graphs the total number of vortices in the system Nvort(r < R) as a function of time
for no pinning (V0 = V1 = 0), and for a moat with pinning sites inside it but none outside it
(V0 6= 0, V1 = 0). Anticipating the study of glitch size and waiting time statistics in Section
2.4, we investigate whether the total number of vortices and their distribution in the system,
as functions of time, differ between the two cases. For t & 25 vortices leave the system at
an approximately constant rate in both simulations. There is little difference between the two
curves: a linear fit to Nvort(r < R) versus t gives a gradient of −0.55 without pinning, and
−0.57 with a moat, and the maximum difference between the number of vortices in each system
is 11 at t = 16. If we think of the moat as a defect which perturbs the vortex distribution, then
this result suggests that the vortex array self-adjusts to ‘heal’ the defect: vortices pin near the
moat, increasing the local Magnus force and lowering the barrier imposed by the moat so that
the outward vortex flux (after some period of equilibration) carries no imprint of the defect.
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Figure 2.7: The spatial distribution of vortices versus time without pinning (blue curve; V0 =
V1 = 0), and with a moat but no lattice (green curve; V0 6= 0, V1 = 0). Left panel: number of
vortices in the region |r − R| < ξ. Right panel: overdensity of vortices in the region |r − R| < ξ,
[nvort(|r −R| < ξ)− n̄vort]/n̄vort, versus time. Parameters: same as figure 2.6.

We now turn to the question of how the vortex pattern evolves in the presence of a moat, given
that the net flux of vortices out of the system is unchanged from the no-moat configuration.
Figure 2.7 shows the number of vortices pinned in the moat, Nvort(|r−R| < ξ) (left panel), and
the overdensity of vortices pinned in the moat, [nvort(|r−R| < ξ)− n̄vort]/n̄vort (right panel), as
functions of time for the no pinning (blue) and moat (green) configurations. We see that the
number of vortices pinned in the region |r − R| < ξ is approximately constant until t ≈ 160,
when it begins to decrease linearly (green curve, left panel). A linear fit to Nvort(|r − R| < ξ)
versus t for t > 160 gives a gradient of −0.05. However the density of vortices pinned in the
moat relative to the system as a whole increases with time (green curve, right panel). As the
star spins down, both the net flux of vortices out of the moat and the system as a whole is
positive, but vortices leave the system as a whole ≈ 10 times faster than they leave the moat.
This means that Nvort(|r − R| < ξ) and Nvort(r < R) both decrease, the latter faster than the
former. Figure 2.8 shows a snapshot of |Ψ|2 at two different times, with vortices marked by
open green circles. At t = 250 (left) the vortex overdensity in the moat is 1.60; by t = 331.45
(right) it has risen to 2.94.

2.4 Vortex avalanches

We now study vortex avalanches and spasmodic spin down in order to investigate how a moat
affects neutron star spin-down and glitches. In Section 2.4.1 we describe the algorithm used to
find glitches in the spin-down data, and in Section 2.4.2 we present glitch size and waiting time
statistics.



2.4. Vortex avalanches 19

-40 -20 0 20 40
-40

-20

0

20

40

-40 -20 0 20 40
-40

-20

0

20

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.8: Alternative visualization of the vortex overdensity in the moat and its growth with time.
Contour plots of the condensate density |Ψ|2 at (left) t = 250 and (right) t = 331.45. Light (dark)
represents high (low) density, vortices are marked by open green circles, and the edges of the moat
(at R± ξ) are indicated by red circles. Parameters: same as figure 2.6.

2.4.1 Glitch detection

In the glitch detection algorithm described by Warszawski & Melatos (2011), Ω(t) is first
smoothed with a top-hat window function of width tsm to combat numerical jitter. A glitch
is deemed to occur at time-step i, whenever we have Ω(ti+1) > Ω(ti), that is, whenever the
smoothed angular velocity of the condensate increases. Let the end of a glitch tf be the first
time-step after ti for which Ω(tf ) > Ω(tf+1), that is, the time-step after which the angular
velocity again begins to decrease. We then define the relative glitch size as ∆Ω/Ω = [Ω(tf ) −
Ω(ti)]/Ω(ti), and the waiting time ∆t as the time interval between tf for successive glitches.
Figure 2.9 shows (left panel) the profile of a typical glitch, for different values of the smoothing
timescale tsm and (right panel) the number of glitches detected by the algorithm over the whole
simulation (0 ≤ t ≤ 190.8) versus tsm. As tsm initially increases from 0, a large number of small
glitches are removed, while for tsm & 1.5 the number of glitches decreases slowly with tsm. We
conclude that the true number of glitches is approximately 40, where Ng flattens out, and take
tsm = 0.15. This coincides with the left panel, where for tsm > 0.146 the algorithm detects a
single glitch in the time interval 107.6 ≤ t ≤ 108.8, as required by eye and the short duration
of the timescale over which the multiple peaks in the unsmoothed Ω(t) occur.

2.4.2 Size and waiting time statistics

The hypothesis that neutron star glitches are produced by avalanche dynamics implies that
glitch sizes are distributed as a power law probability density function [p(∆Ω/Ω) ∝ (∆Ω/Ω)α],
and waiting times are distributed as an exponential [p(∆t) = λ exp(−λ∆t)] (Jensen, 1998;
Melatos et al., 2008). This motivates the construction of probability density functions of these
quantities from the simulations. The left panel of Figure 2.10 shows the size probability density
function p(∆Ω/Ω) on log-log axes with and without a moat (solid green and blue curves respec-
tively). The dashed curves are power-law fits with α = −0.02 (moat) and −0.81 (no moat) over
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Figure 2.9: Features of the glitch-finding algorithm. Left panel: profile of a typical glitch for different
smoothing time-scales tsm. For tsm > 0.146 only one glitch is detected in the plotted time interval,
107.6 ≤ t ≤ 108.8, as required by eye. Right panel: number of glitches Ng detected by the algorithm
over the whole simulation (0 ≤ t ≤ 190.8) versus tsm. The left panel is a reproduction of Figure
5.6 in Warszawski (2011). Both plots are generated from the time series Ω(t). Parameters: R = 7,
V0/V1 = 7/3, ξ = 1.58, a0 = 1.

≈ 1.4 decades. We omit glitches with log (∆Ω/Ω) < −3 as we are interested in the collective
vortex dynamics and not small readjustments or ‘jiggling’ involving few vortices. The right
panel of Figure 2.10 shows the waiting time cumulative probability, P (∆t) =

∫ ∆t

0
d(∆t′)p(∆t′).

An exponential fit to the data gives dimensionless mean glitch rates λ = 0.47 and 1.44 with
(V0 6= 0) and without (V0 = 0) a moat respectively. The number of glitches detected by the
algorithm is Ng(V0 6= 0) = 28 and Ng(V0 = 0) = 204. There are too few events to properly
discriminate between a power law and some other probability density function, and we do
not claim that the data demonstrate a power law distribution. Rather, this is a convenient
parametrization in keeping with tradition in other work.

For tsm = 0 we have Ng(V0 6= 0) = 48 and Ng(V0 = 0) = 592, λ(V0 6= 0) = 1.959 and λ(V0 =
0) = 5.674, and power-law indices α(V0 6= 0) = −0.302 and α(V0 = 0) = −1.098. As discussed
in Section 2.4.1, this case overestimates the true number of glitches by including multipeaked
glitches and numerical jitter. For tsm = 0.3 we find Ng(V0 6= 0) = 21 and Ng(V0 = 0) = 121,
λ(V0 6= 0) = 0.282 and λ(V0 = 0) = 0.944, and α(V0 6= 0) = −0.031 and α(V0 = 0) = −0.476.
Although Ng, α and λ depend on tsm, the overall shape of the probability density functions is
similar. Moreover, the ordering of Ng, α and λ is preserved between the moat and no moat
cases for a wide range of tsm. Hence we can reasonably comment below on the qualitative effect
of a moat on the statistics. We do this in the following paragraph.

The quantitative trends in the glitch statistics are as follows: compared to the no-moat system,
a moat gives rise to (i) fewer glitches; (ii) a smaller mean glitch rate λ; and (iii) a smaller
power-law index α. That is, a moat gives rise to glitches which are larger but less frequent than
those which occur in the absence of a moat. The values of α obtained in the two experiments
differ by an order of magnitude, so that we can expect glitches to be significantly larger on
average, if a moat is present. The power-law index α = −0.81 for an experiment without a
moat but with a lattice of pinning sites is comparable to the range α = −0.994 to −1.104, for
different values of tsm, reported by Warszawski & Melatos (2011). The authors of that paper
also report, from exponential fits to P (∆t), mean glitch rates of λ = 0.011 to 0.87 (for different
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Figure 2.10: Glitch statistics with (green) and without (blue) a moat. Left panel: probability
density function (solid curves) of fractional glitch sizes ∆Ω/Ω. The dashed curves are power-law fits
with α = −0.81 (blue) and α = −0.02 (green). We omit glitches with log(∆Ω/Ω) < −3. Right panel:
cumulative probability distribution of waiting times ∆t. The dashed curves are exponential fits with
λ = 0.47 (green) and λ = 1.44 (blue). Parameters: V0/V1 = 10/3, ξ = 1.58, a0 = 1, tsm = 0.15.

tsm) but find that these fits fail the Kolmogorov-Smirnov confidence test for the null hypothesis
that the cumulative waiting time data is drawn from P (∆t).

2.5 Conclusions

In this chapter, we study vortex motion in a rotating, decelerating BEC with a uniform grid of
pinning sites plus an annular barrier (‘moat’) of deeper pinning. The ultimate aim is to clarify
the role of stratified pinning in a neutron star as input into future, idealized glitch models.
We solve the time-dependent GPE and investigate the equilibrium vortex configuration, vortex
dynamics and glitch statistics. We find (Section 2.2) that vortices pin preferentially in the
moat, so that there is a vortex overdensity in the region |r−R| < ξ. The overdensity gives rise
to large gradients in the azimuthal condensate velocity at r ≈ R. The net outward vortex flux
is unchanged by the moat, but the vortex flux out of the system as a whole is greater than the
flux out of the region |r −R| < ξ (Section 2.3). In other words, the number of vortices pinned
in the moat decreases with time, but increases as a fraction of the total number of vortices in
the system. The moat produces glitches which are fewer in number but on average larger than
without a moat (Section 2.4).

The study in this chapter is motivated by the following specific astrophysical question: is it
possible to detect the signature of stratified pinning in a neutron star in its long-term spin-
down rate and glitch size and waiting time statistics? Needless to say, the results do not answer
this question definitively, because the simulations are idealized in several important ways. For
example, the number of vortices in a simulation is of order 100, and the ratio of pinning sites
to vortices is of order 10, compared to 1016 − 1019 and 1010 in a neutron star, respectively
(see Haskell & Melatos (2015)). Nevertheless, two results stand out as likely to be relevant
astrophysically: the tendency for vortices to accumulate in moats as the system evolves, and



2.5. Conclusions 22

the reduction in number but increase in size of glitches when a moat is present. Larger GPE
simulations containing more vortices and running for longer time intervals will be pursued in
future work, although simulations approaching realistic neutron star conditions are beyond the
reach of current computer technology.



Chapter 3

Diffusive heat transfer

An accreting neutron star is heated by nuclear burning in the atmosphere, and density-driven,
pycnonuclear reactions deep in the crust as neutron rich nuclei are compressed by in-falling
matter. These reactions drive the crust and core out of equilibrium, depositing heat which
propagates inwards. The crustal lattice can be treated as an elastic solid which at a density of
ρc ≈ 1.5×1014 g cm−3 transitions to the superfluid outer core (Pons et al., 2013). The complex,
amorphous arrangements of nucleons thought to occur in the so-called nuclear ‘pasta’ phase at
the base of the inner crust [8× 1013g cm−3 < ρ/(g cm−3) < ρc] result in a heterogeneous charge
distribution which has been shown to have low electrical and thermal conductivity (Pons et al.,
2013; Horowitz et al., 2015). The superfluid core on the other hand is believed to have very high
thermal conductivity (Potekhin et al., 2015). More generally, the conductivity is a function of
temperature, density, scattering rates and other microphysical inputs, so that we expect it to
vary as a function of radius.

In this chapter we study diffusive heat transfer in an accreting neutron star with an initial
deposition of thermal energy in the crust. We construct a simple model of the interior with
radially-dependent thermal conductivity and solve the heat equation. In Section 3.2 we derive
an analytic solution to the one-dimensional heat equation for a stratified, spherically symmetric
neutron star. In Section 3.3 we study the steady state solutions and compute the energy
deposited in the core. Section 3.4 examines the transient heat flux and thermal relaxation
time. The goal in this chapter is not to produce a realistic model for the thermal evolution of
a neutron star. For this reason, physical quantities are given in arbitrary units; we indicate
realistic values for κ and cp in Table 1.2. Models with detailed microphysical inputs have been
studied by various authors (see Section 1.4). We instead aim to understand how the radial
dependence of the conductivity affects diffusive heat transport in general terms. This lays the
groundwork for Chapter 4, where we include non-diffusive heat transport associated with a
superfluid.

3.1 Heat equation

We can write the equation of conservation of energy in a viscous, thermally conducting fluid
with velocity v in the form (Landau & Lifshitz, 1986)

ρT
(∂s
∂t

+ v · ∇s
)

= σik
∂vi
∂xk

+∇ · (κ∇T ) +Q, (3.1)

where ρ is the density, κ is the thermal conductivity, σik is the viscous stress tensor and Q
represents sources and sinks. Assuming that the fluid is at rest and using the definition for
the specific heat capacity cp = T (∂s/∂T ), we obtain the heat equation, which in spherical
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symmetry is given by

ρcp
∂T (r, t)

∂t
=

1

r2

∂

∂r

(
r2κ(r)

∂

∂r
T (r, t)

)
+Q(r, t). (3.2)

The heat equation is a second order parabolic equation describing diffusion. κ and cp have
units W/(m ·K) and J/(kg ·K) respectively, and r is the radial coordinate.

Equation (3.2) can be solved analytically for a composite medium consisting of N layers with
left and right boundaries ri and ri+1 respectively, for i = 1, 2, . . . , N (Vodicka, 1950). Each
layer has conductivity κi. In composite media, imperfect contact at an interface introduces a
heat transfer resistivity. This is a property of the local flow conditions and surface geometry
rather than a thermo-mechanical property of the materials, and so is not accounted for by κ.
We therefore allow for imperfect heat transfer across an interface by defining the heat transfer
coefficient h and dimensionless Nusselt number N (Landau & Lifshitz, 1986):

h =
φ(r, t)

∆T
, (3.3)

N = hl/κ. (3.4)

Here φ(r, t) = −κ∂T/∂r is the thermal flux per unit area, and l is a characteristic length
scale. ∆T = T1 − T0 is a characteristic temperature difference across the interface. N and h
arise because we are considering a composite medium whose layers are coupled by their shared
boundaries (mathematically, by their boundary conditions). Thermal resistance at a boundary
usually arises in the context of convective heat transfer, but applies also where the bulk motion
of the fluid vanishes as in Equation (3.2) (see section 53, Landau & Lifshitz, 1986, for details).

3.2 Analytic solution

3.2.1 Mathematical formulation

We treat the star as spherically symmetric and composed of N = 2 shells—the interior core
and exterior crust—and denote the centre of the star, crust-core interface and stellar surface
by r1, r2 and r3 respectively. We take ρ and cp to be uniform throughout the entire star, and
the conductivity to be uniform within each region, so that

κ(r) =

{
κ1 if r < r2

κ2 if r ≥ r2.

Given these assumptions, the system of equations is written as

ρcp
∂Ti(r, t)

∂t
=
κi
r2

∂

∂r

[
r2 ∂

∂r
Ti(r, t)

]
+Qi(r, t), ri ≤ r ≤ ri+1, (3.5)

for i = 1, 2. For a perfectly insulated boundary at ri we have zero thermal flux and hence
h = 0. For zero insulation, the two adjacent regions freely exchange heat so that very close
to the interface, the temperature must be the same on either side. Then ∆T vanishes and we
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must have h =∞. These considerations motivate the following general conditions on T at the
external boundaries:

−κ1
∂T1(r1, t)

∂r
= h1

[
T1(r1, t)− y1(t)

]
and (3.6)

−κ2
∂T2(r3, t)

∂r
= h3

[
T2(r3, t)− y2(t)

]
. (3.7)

Here we have specified ambient temperatures y1(t) and y2(t) outside the solution domain, at
r = r1 and in the stellar atmosphere, r ≥ r3. In a neutron star, the crust is blanketed by an
insulating iron envelope (Yakovlev et al., 2005), so that h3 ≈ 0. Spherical symmetry implies
that the flux at the stellar centre must also vanish (h1 = 0). In this case the right hand side
of Equations (3.7) and (3.6) vanish and we do not need to specify the ambient temperatures:
the central and surface temperatures are outputs of the model. We postpone applying these
boundary conditions in order to present a fully general solution with non-zero h1 and h3.

At r2 energy conservation implies continuity of φ, so that the boundary conditions take the
form

κ1
∂T1(r2, t)

∂r
= κ2

∂T2(r2, t)

∂r
and (3.8)

−κ1
∂T1(r2, t)

∂r
= h2

[
T1(r2, t)− T2(r2, t)

]
. (3.9)

Finally, we define an initial temperature distribution in each region, Ti(r, 0). Equations (3.5)
are two second order partial differential equations. We have specified four boundary conditions
and two initial conditions, so the problem is mathematically well posed.

To solve (3.5), we assume solutions of the form

Ti(r, t) = Ui(r, t) +
2∑

j=1

Hij(r)Fj(t) (3.10)

with
∇2Hij(r) = 0, (3.11)

where F1(t) = −y1(t) and F2(t) = y2(t). Inserting Equation (3.10) into (3.5) and using (3.11)
gives the governing equation for Ui:

ρcp
∂Ui(r, t)

∂t
+

2∑

j=1

Hij(r)
dFj(t)

dt
= κi

1

r2

∂

∂r

(
r2 ∂

∂r
Ui(r, t)

)
+Qi(r, t). (3.12)

We specify boundary conditions for Ui and Hij such that Ti satisfies the boundary conditions
given above. Then Hij is fully determined by a system of linear equations. Ui is found by
expansion in a basis which we specify in Section 3.2.3.

3.2.2 Solution of Laplace’s equation

Equation (3.11) is satisfied by
Hij(r) = Aijr

−1 +Bij, (3.13)
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where Aij and Bij are constants. The boundary conditions are

κ1
dH1j(r1)

dr
− h1H1j(r1) = δ1jh1, −κ1

dH1j(r2)

dr
= h2

[
H1j(r2)−H2j(r2)

]
,

κ2
dH2j(r3)

dr
+ h3H2j(r3) = δ2jh3, κ1

dH1j(r2)

dr
= κ2

dH2j(r2)

dr
.

(3.14)

Hij is found by writing (3.14) as a system of linear equations and solving for the coefficients
Aij and Bij.

3.2.3 Time-dependent solution

We obtain the initial condition for Ui by inserting Ti(r, 0) into Equation (3.10):

Ui(r, 0) = Ti(r, 0)−
2∑

j=1

Hij(r)Fj(0). (3.15)

The boundary conditions are

κ1
∂U1(r1, t)

∂r
− h1U1(r1, t) = 0, −κ1

∂U1(r2, t)

∂r
= h2

[
U1(r2, t)− U2(r2, t)

]
,

κ2
∂U2(r3, t)

∂r
+ h3U2(r3, t) = 0, κ1

∂U1(r2, t)

dr
= κ2

∂U2(r2, t)

dr
.

(3.16)

To find Ui, we expand in the series

Ui(r, t) =
∞∑

m=1

um(t)Xim(r) (3.17)

and apply the operator∇2. This yields an eigenvalue problem for each m which has the solution

Xim(r) = CimMim(r) +DimNim(r), where (3.18)

Mim(r) =
1

r
sin
[(ρcp

κi

)1/2

γmr
]
, Nim(r) =

1

r
cos
[(ρcp

κi

)1/2

γmr
]
, (3.19)

Cim and Dim are constants, and γm are the eigenvalues. The eigenfunctions Xim obey the same
boundary conditions as Ui.

To find Cim and Dim we again write the boundary conditions as a linear system Zc = 0.
c = [C1m, D1m, C2m, D2m]T is the vector of coefficients and the matrix Z encodes the boundary
conditions. The eigenfunctions are the roots of the transcendental equation det(Z) = 0 and
satisfy 0 < γ1 < . . . < γm < . . ..

To obtain the expansion coefficients of Ui we substitute (3.10) and (3.17) into (3.5). This gives
a differential equation which has the solution

um(t) = um(0)e−γ
2
mt +

2∑

j=1

∫ ∞

−∞
dτ
{[
hmj

dyj(τ)

dτ
+ qm(τ)

]
e−γ

2
m(t−τ)

}
, (3.20)
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f(r) = e−5r sin[16π(r − r1)/10] (solid black line) by the first ne terms of the series expansion (dashed
coloured lines). Right: convergence metric for the series expansion applied to the damped sine wave
(blue line) and to a Gaussian, f(r) = exp[−(r− 0.3)2/0.01] (green line). The metric C is specified by
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where Qi and Hij have been expanded in the basis of eigenfunctions. The expansion coefficients
of Qi(r, t) follow from orthogonality of the basis and are given by

qm(t) =
2∑

i=1

{[∫ ri+1

ri

dr r2Xim(r)2
]−1

∫ ri+1

ri

dr r2Qi(r, t)Xim(r)

}
. (3.21)

Replacing Qi with Hij gives the coefficients hm. Equations (3.20) and (3.21) and the equivalent
equation for hm determine Ui and complete the formal solution.

Figure 3.1 shows the reconstruction of a test function f(r) = e−5r sin[16π(r − r1)/10] as the
number of terms included in its series expansion is increased (left panel). The right panel
shows a metric for how quickly two test functions converge to their exact form as more terms
are included in the expansion. The metric is

C = abs
[( ∫ r2

r1

fdr
)−1
∫ r2

r1

(fne − f)dr
]
, (3.22)

where f is the analytic test function and fne is the approximation of f given by the first ne
terms of its expansion. C gives a dimensionless measure for how closely fne reproduces f .

3.3 Steady state solutions

We now suppose that there are no sources or sinks (Qi(r, t) = 0 identically), and that the
ambient temperatures y1 and y2 are constant in time. Then Equation (3.20) implies that the
time dependent component of Ti decays exponentially on a timescale dominated by the smallest
eigenvalue, so that after some time Ti(r, t) ≈ Ti(r) =

∑2
j=1Hij(r)Fi. In this section we study

how these solutions depend on the parameters κi and h2.
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3.3.1 Energy deposition in the core

In an accreting neutron star, a fraction f of the energy released from nuclear reactions (out-
bursts) in the crust propagates into the core, while the remainder (1− f) propagates outwards
to the atmosphere and radiates away. Equilibrium is reached when the inflowing heat is bal-
anced by the neutrino flux out of the core, resulting in an inverted temperature profile with
a maximum in the stellar crust or ocean. The fraction f and the temperature of the core
can be estimated by observing the luminosity after accretion-triggered outbursts (Brown et al.,
1998). Estimates of the core temperature from the quiescent luminosity motivate the following
astrophysical question: how do the thermal properties of the core and crust affect the amount
of energy, in equilibrium, which is deposited in the core? We consider the total thermal energy
of the core:

Ucore =

∫ r2

r1

dr
[
T (r)ρ(r)cp(r, T )

]
. (3.23)

Since we take ρ and cp to be uniform in r1 ≤ r ≤ r2, Ucore is equal to the integral over T (r),
times mcorecp, where mcore is the core mass.1 Figure 3.2 plots Ucore versus κ1/κ2 for various
h2 (left panel). Interestingly, Ucore decreases monotonically with κ1/κ2, though the decrease is
smallest when h2 is large. In other words—and somewhat counter intuitively—more energy is
deposited in cores with lower conductivity than in those with higher conductivity. For h2 = 105,
Ucore = 66.0 and 51.1 for κ1/κ2 = 10−4 and 10 respectively. For h2 = 10−2 the difference is
much larger: Ucore = 65.6 and 20.5 for the same κ1/κ2.

The hi chosen here may not reflect actual conditions in a neutron star. As we note in Section
3.2.1, no-flux at the stellar surface and centre implies h1 = h3 = 0. However, the model neglects
sources and sinks of thermal energy due to radiation, viscous flow in boundary layers, and other
processes not captured by Equation (3.2). One way to account for these is to relax the no-flux
boundary conditions. Similarly, Potekhin et al. (2015) have discussed the idea of a ‘bottleneck’
at the interface between strata in a neutron star. Within the present framework, this could be
incorporated by a finite h2 which reduces the flux across the crust-core interface. The limiting
case of large h2 is also shown in Figure 3.2. A detailed analysis which accounts for these features
in a realistic fashion is beyond the scope of this work. The present result should be understood
in this context. It shows that in certain situations (which may not be astrophysically relevant),
Ucore increases with decreasing conductivity.

To explain this physically, we plot (Figure 3.2, right panel) the temperature profiles for different
values of κ1/κ2 and a representative choice of h2. In the case of large κ1/κ2, the entire star
is roughly isothermal in equilibrium. For small values of κ1/κ2, on the other hand the crust
and outer regions of the core remain hot, while deeper regions are comparatively cool. The
trade-off is such that more thermal energy is stored in the core in the latter case than in the
former. We conclude by noting that the neutrino luminosity is a function of the mass of the
neutron star: high mass neutron stars cool more rapidly (Yakovlev et al., 2005). Hence mcore

affects Ucore not only directly through Equation (3.23), but also by setting the equilibrium (in
which the diffusive and neutrino fluxes balance) ultimately reached by the system.

1The onset of superfluidity, which we do not consider here, has a particularly large effect on this assumption,
since the heat capacity of superfluid neutrons is strongly reduced. See Yakovlev et al. (2001), Section 5.5, for
details.
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Figure 3.2: Steady state properties of the core. The crust-core interface is at the vertical dotted
black line. Left: thermal energy deposited in the core as a function of κ1/κ2. Right: temperature
profiles for different κ1/κ2. Parameters: h1 = h3 = 0.01, y1 = 1, y2 = 4.

3.4 Transient heat transfer

We now turn to the time-dependent evolution of the system, which for convenience we supple-
ment with a fully numeric code. The code was written by me using the implicit Crank-Nicholson
algorithm. In the analytic solution (Section 3.2), the piecewise definition of κ results in a math-
ematical discontinuity in T . Discontinuous T implies an infinite temperature gradient, which
would induce an infinitely large thermal flux. But an infinite flux would instantaneously re-
move the temperature difference. We conclude that in a physical system T must be everywhere
continuous, and ensure this by replacing the piecewise definition for κ with a Fermi function

κ(r) = (κ1 − κ2)
[
1 + exp

(r − r2

η

)]−1

+ κ2, (3.24)

which satisfies κ(r) ≈ κ1 for r < r2 and κ(r) ≈ κ2 for r > r2 for η sufficiently small. We model
a thermal pulse on the surface as a narrow Gaussian centred on r3, which we take as the initial
condition for T .

In this section we consider the thermal relaxation of an accreting neutron star, and demonstrate
the existence of large thermal gradients and fluxes for certain choices of κ(r). Large thermal
gradients may be important for several reasons. Andersson et al. (2013) have emphasized that
the superfluid transition is a local phenomenon which is triggered by the position-dependent
temperature and density. Regions close to the superfluid transition temperature may have
a disproportionately large effect on the dynamics. Bildsten (1998) has argued that thermal
gradients can trigger asymmetric electron-capture. This causes density asymmetries and hence
a mass quadrupole which sources gravitational wave emission and explains the narrow range
of frequencies at which rapidly accreting LMXBs are observed to be rotating. These problems
depend on the local thermal evolution, which we study below. We do not include nuclear
processes or the effects of superfluidity directly, but seek to clarify how temperature gradients
depend on the basic thermal properties of the crust and core.
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3.4.1 Heat flux

The conductivity in a neutron star is a complicated function of the temperature and micro-
physics (see Potekhin et al., 2015, for a detailed study). Here we study the general question of
how the transient temperature profile depends on κ. Figure 3.3 shows T versus r at equal time
intervals for two values of κ1/κ2, from t = 0.02 (solid blue line) to t = 0.1 (solid red line). Low
conductivity in the core causes steep temperature gradients (‘fronts’) to form in the vicinity of
the interface and propagate inwards. Figure 3.4 compares the flux at the interface as a function
of time for different values of κ1/κ2 (left panel). For large κ1/κ2, the flux at r = r2 is larger
and peaks earlier, but is sustained for a shorter period, than for small κ1/κ2. In the latter
case, successively deeper layers are heated as the front moves inwards. The right panel shows
the flux versus time at different radii for κ1/κ2 = 104. We see that the flux deep in the core
(r = 0.2, purple curve) peaks before the flux at r = 0.65 (blue curve), so that the interior is
rapidly heated.

Figure 3.5 (left panel) plots the radial location of the maximum flux against t for different
κ1/κ2. For small κ1/κ2, the front propagates more slowly inwards, as expected from the above
discussion. To study the trade-off between rapid and slow but sustained heating, we integrate
φ(r = r2, t) for 0 ≤ t ≤ 0.1 to find the total energy per unit area which diffuses into the core over
that time period, for different κ1/κ2 (Figure 3.5, middle panel). For a slowly propagating front
corresponding to small κ1/κ2, energy is transported more slowly over the interface, resulting in
these systems taking longer to relax thermally. This is shown in the right panel, which plots
the equilibration time. We consider the equilibration time further in the next section.

3.4.2 Equilibration time

Consider a temperature perturbation δT in a uniform slab of width l. A simple estimate from
the heat equation shows that the perturbation relaxes on a timescale given by

τ =
δT

δṪ
=
ρcp
κ
l2. (3.25)

How quickly does the perturbation relax in a stratified neutron star? This question is relevant
to observations of cooling light curves, discussed in Sections 1.4. Slower propagation of the
fronts considered in the last section is due to lower conductivity in the core, and corresponds
to longer equilibration times.

More precisely, as we note in Section 3.3, τ is dominated by the contribution of the smallest
eigenvalue of the time-dependent component, γ1. Figure 3.5 plots the equilibration time from
numerical simulations against κ1/κ2 on log-log axes, with κ2 = 1 fixed (right panel, blue
squares). We say that the system has equilibrated when the temperature at every spatial node
in the computational domain is within 0.01% of its final value. The dashed lines are power-law
[τ = (κ1/κ2)α] fits to the data. The sensitivity of the (logarithmic) equilibration time to the
core conductivity changes at κ1/κ2 = 1, above which it decreases significantly less per increment
in κ1/κ2. We find α = −0.82 for −6 ≤ log(κ1/κ2) ≤ 0, and α = −0.12 for 0 ≤ log(κ1/κ2) ≤ 4.

One immediate question is the following: if we instead fix κ1 = 1 and vary κ2, will the plot
of the equilibration time versus κ1/κ2 change? In other words, for a given value of κ1/κ2, is
the equilibration time dependent on whether the region of lower conductivity is in the crust or
the core? For brevity we avoid writing out the equation which determines τ [namely det(Z) =
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0]. However, it is simple to show that viewed as a function of κ1 and κ2, det(Z)(κ1, κ2) =
det(Z)(κ2, κ1), that is, the function is identical under interchange of the two conductivities.
The question posed above is therefore answered in the negative: the equilibration time is the
same, regardless of whether the crust or core has lower conductivity.

3.5 Conclusions

In this chapter we study diffusive heating in a neutron star with radially-dependent κ. The
aim is to understand, in general terms, the thermal evolution following an initial pulse of heat,
deposited in the crust during accretion. We derive (Section 3.2) an analytic solution to the heat
equation in a stratified neutron star, and study its steady state solutions (Section 3.3). We
find that for certain boundary conditions the energy deposited in the core in the steady state
is larger for smaller κ1/κ2. In Section 3.4 we confirm that large values of κ1/κ2 correspond
to rapid heating of the core and fast equilibration. On the other hand where κ1/κ2 is small,
thermal ‘fronts’—regions where the temperature gradient is particularly steep—develop at the
crust core interface and propagate slowly inwards, heating successively deeper layers. The
work in this chapter is extended in Chapter 4, where we solve the hydrodynamic equations for
a neutron superfluid, with a diffusive term in the energy equation.



Chapter 4

Superfluid heat transfer

Models of neutron stars at finite temperature typically account for superfluidity by including an
additional term in the conductivity and evolving the diffusion equations (1.10) and (1.11). The
electron-electron conductivity is believed to dominate (Chamel & Haensel, 2008). As discussed
in Section 1.2.2, however, the hydrodynamic equations for laboratory superfluids admit wave
solutions not only for the density perturbations, but also for the entropy. Analogous oscillatory
modes in the neutron star case have been studied by various authors (Epstein, 1988; Lindblom &
Mendell, 1994; Comer et al., 1999; Andersson & Comer, 2001), and recent work suggests that
superfluidity in the core of a neutron star can trigger temperature-dependent, convectively-
unstable oscillations (Gusakov & Kantor, 2013; Kantor & Gusakov, 2014; Gualtieri et al., 2014;
Passamonti et al., 2015). These results challenge the conventional view that thermal effects are
weakly affected by the onset of superfluidity.

In this chapter we extend the work of Chapter 3 by solving the hydrodynamic equations for
a neutron superfluid and proton-electron component at finite temperature. As in the previous
chapter, we study a stratified neutron star with an initial pulse of heat near the surface. The
central focus now, however, is to investigate how the heat transport is affected by superfluidity.
In other words, we ask how the non-diffusive, convective modes associated with superfluidity
alter the diffusive conduction studied in the previous chapter and assumed by many authors.

The chapter is structured as follows. In Section 4.1 we describe the hydrodynamic model.
In Sections 4.2 and 4.3 we discuss the numerical implementation of the system of equations,
and detail some difficulties encountered in the course of this work. In Sections 4.4 and 4.5
we study convective heating and the response of the proton-electron fluid to the conductivity
mismatch. The preliminary calculations presented in these sections were done with a numerical
code written by me to solve the equations of motion for the two-component model. We find
that convective heating is important at lower conductivities, and that the proton-electron fluid
develops a layer where the flow speed is high when there is a large conductivity mismatch
between the neutron star strata. We show that the coupling between fluid components affects
the size of these velocities, and reduces convective heating in general.

4.1 Hydrodynamics of finite temperature superfluids

4.1.1 Two-component model

A finite-temperature, superfluid description of a neutron star has at least four independent fluid
components: neutrons, protons, electrons, and the entropy, which is treated in this framework

33
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as a separate, massless flow (Andersson & Comer, 2006; Lopez-Monsalvo & Andersson, 2011).1

In this section we make some simple assumptions which reduce the four dynamical degrees of
freedom associated with these components to two.

Following previous studies, we assume that the electron fluid is coupled electromagnetically to
the proton fluid, so that the net charge current vanishes and there are no global electromagnetic
fields (Alpar et al., 1984b; Passamonti et al., 2015). We therefore treat the protons and electrons
as comprising a single fluid which we denote by the subscript p. This corresponds to what is
called the normal fluid in Landau’s model of superfluid 4He, where it refers to the excited modes
of a single particle species (see Section 1.2.2). In keeping with this simple picture, however,
we assume that the entropy is carried by the proton-electron fluid only. In reality, protons in
the core are superconducting, so that only the electrons carry entropy. We do not consider
superconductivity in this work (cf. Drummond & Melatos, 2017, 2018).

Although we ignore global electromagnetic fields, we account for coupling between the two
fluids due to mutual friction. Mutual friction is a dissipative force which arises due to electron
scattering off vortex cores, which carry a magnetic flux due to Fermi liquid interactions. Fi-
nally, we note that the two fluids are also coupled via the strong nuclear interaction. This is
incorporated via the equation of state, which we present in Section 4.1.3.

4.1.2 Governing equations

The two fluids satisfy the mass conservation equations

∂ρn
∂t

+∇ · (ρnvn) = 0 and (4.1)

∂ρp
∂t

+∇ · (ρpvp) = 0, (4.2)

and the momentum equations

∂vn
∂t

+ vn · ∇vn = −∇µ̃n − F and (4.3)

∂vp
∂t

+ vp · ∇vp = −∇µ̃p −
s

ρp
∇T + F. (4.4)

Here µ̃x is chemical potential per unit mass of species x, and s is the entropy per unit volume.
F = K(vn−vp) is the acceleration due to mutual friction (or any other linear coupling), whose
size is controlled by the parameter K (Hall & Vinen, 1956). The entropy transport obeys

∂s

∂t
+∇ · (svp) =

1

T
∇ · (κ∇T ), (4.5)

where we include a diffusive term on the right hand side (see, e.g., Chandler & Baym, 1986).
Equations (4.1)-(4.5) are nine partial differential equations for the nine dependent variables
ρn, ρp, vn, vp and s.

1We do not consider muons, which are present in the core. Their velocity field is coupled to that of the
electron fluid by scattering on a timescale τ ≈ (~/kBTFe)(TFe/T )2 (Mendell, 1991), where TFe ∼ 1012 is the
electron Fermi energy. At T = 107K, τ of order 10−13 s. Hence, we treat muons and electrons as a single
component.
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4.1.3 Equation of state

The set of equations presented in the last section is closed by an equation of state ε(ρn, ρp, s)
which relates µ̃n, µ̃p and T to the dependent variables. The equation of state has a contribution
from neutron and proton degeneracy pressure (Hebeler et al., 2013)

εnuc =
~2

2m
(3π2)2/3 3

5

[(ρn
m

)5/3

+
(ρp
m

)5/3]
, (4.6)

and from the degeneracy pressure of the relativistic electron gas:

εe =
3~c
4

(3π2)1/3
(ρp
m

)4/3

. (4.7)

Here ~ is the reduced Planck’s constant, c is the speed of light and we take mn = mp = m. The
factor ρp/m in Equation (4.7) follows from the assumption of local charge neutrality. Hebeler
et al. (2013) parameterize the contribution from strong nuclear interactions as

εint =
~2

2m

(3π2

2

)2/3
{
−1

n0
1/3

[
(2α− 4αL)

(ρn
m

)(ρp
m

)
+ αL

(ρn
m

+
ρp
m

)2]

+
1

n
2/3
0

(ρn
m

+
ρp
m

)1/3[
(2η − 4ηL)

(ρn
m

)(ρp
m

)
+ ηL

(ρn
m

+
ρp
m

)2]
}
, (4.8)

where α = 5.87, η = 3.81, αL = 1.4, ηL = 0.9 and n0 = 0.16 fm−3 is the nuclear saturation
density. Finally, we include thermal effects via the term (Passamonti et al., 2015)

εth =
~c(3π2)1/3

π2k2
B

(ρp
m

)−2/3

s2. (4.9)

Summing the contributions from degeneracy pressure, strong interactions, and thermal effects,
we obtain

ε = εnuc + εe + εint + εth. (4.10)

The proton and neutron chemical potentials and the temperature are defined by the first law
of thermodynamics:

dε = Tds+ µ̃ndρn + µ̃pdρp. (4.11)

4.1.4 Geometry and boundary conditions

The mass flux (and hence the entropy flux) must vanish at the stellar surface. Because we
assume spherical symmetry, the same must be true at the centre. In one-dimension, we impose
vp = vn = 0 at both boundaries, which is consistent with (and enforces) the no-flux condition
on the other variables. As initial conditions we take constant densities for ρp and ρn, and
vp = vn = 0. Similar to the previous chapter, the initial condition for s is a Gaussian near the
surface which encodes the initial pulse of heat. The initial densities and temperature (which
is a function of ρp and s) are of the order of a realistic neutron star: 1013 g cm−3 and 108 K
respectively.

We take the neutron star to have radius R = 10 km, and to again consist of two strata with
thermal conductivity given by Equation (3.24). We place the crust-core boundary at r = 5 km.
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In a real neutron star, the boundary is much closer to the surface (r ≈ 1 km). However, in
this chapter we are interested in studying the underlying physics, and not creating a realistic
model. Placing the boundary at the midpoint of the domain has little impact on the dynamics,
while improving the readability of the results.

4.2 Numerical details

Equations (4.1)-(4.4) are first order and hyperbolic, while Equation (4.5) is second order and
parabolic. The velocity equations and the entropy equation are nonlinear. Non-linear hy-
perbolic PDEs are prone to discontinuous solutions (i.e. shock waves), so their numerical
implementation must be treated with care.

In one dimension the system of hyperbolic equations (4.1)-(4.4) can be written in the flux-
conservative form

∂u

∂t
+
∂f(u)

∂x
= Q. (4.12)

Here u, f and Q are vectors of the dependent variables, non-linear fluxes, and right hand side
gradient terms, respectively. To solve Equation (4.12) numerically, one can use either first or
higher order methods. First order methods have the general advantage of higher stability in
the vicinity of a shock wave, but at the cost of numerical accuracy. Higher order methods are
more accurate in general, but are prone to exhibiting spurious, high-frequency oscillations near
a discontinuity (LeVeque, 1992).

One solution to this trade-off is a flux-limiter scheme, which combines a first order approxima-
tion in the vicinity of shock fronts with a higher order method elsewhere in the computational
domain. To produce the results in this chapter, I solve Equations (4.1)-(4.4) in one-dimension
by implementing the explicit, split-step, Richtmyer Lax-Wendroff algorithm described by Jerez
Galiano & Uh Zapata (2010). The algorithm uses conservative upwinding in the predictor step
and flux limiting in the corrector step. The entropy equation is solved similarly, but I incor-
porate an additional split-step in which the diffusion operator is advanced using the implicit
Crank-Nicholson algorithm.

4.3 Catalogue of approaches

Over the course of this research, a number of attempts were made to build a consistent model.
Before presenting results for the model described in Section 4.1, I discuss some of the lessons
learned from these false starts. I initially focused on the Landau two-fluid equations for super-
fluid 4He; in this section we use the subscripts n (s) for the normal fluid (superfluid). These are,
in essence, Equations (4.1)-(4.5), though the pressure terms on the right hand side differ. One
challenge was finding an appropriate equation of state, which is needed to specify the chemical
potential and temperature. Treating the system as an ideal Bose gas is insufficient here: the
chemical potential then vanishes below the transition temperature, which is the regime we are
interested in (see Pethick & Smith, 2008, Chapter 2). An explicit equation for the chemical
potential is given by Papoular et al. (2012), though it caused the numerical solution to diverge.
Surprisingly, taking the negative of that expression produced sensible results. I was not able
to explain this. An alternative is to assume the fluids are incompressible: ∇ · vn = 0 = ∇ · vs.
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This is a good approximation in a neutron star, where the fluid velocity is much less than the
sound speed. Then the pressure terms are fixed implicitly by the incompressibility condition
and an equation of state is not needed.

Another, more restrictive assumption is that the net mass transfer vanishes (ρnvn = −ρsvs).
If we also assume that the species ratio ρn/ρs is approximately independent of temperature,
then it is possible to reduce the system to two equations for the temperature and normal fluid
velocity:

∂T

∂t
=

κ

ρcp

∂2T

∂x2
− vn

∂T

∂x
− s

cp

∂vn
∂x

+
A(T )ρ3ρn
ρ3
scp

v2
n +

A0

cp

(∂vn
∂x

)2

, (4.13)

∂vn
∂t

= A0
ρs
ρn

∂2vn
∂x2

− 3vn
∂vn
∂x
− A(T )

ρ3

ρ2
s

v3
n − s

ρs
ρn

∂T

∂x
. (4.14)

I initially found this form of the equations appealing, since there existed simple, experimen-
tal relations for the dependent variables in terms of the fundamental variables T and vn. On
the other hand, the equations are now second order and less intuitive than in the original,
flux-conservative formulation. A further downside is that these equations are unconventional,
making it difficult to apply well-known techniques from computational fluid mechanics. I was
ultimately unable to write a code which could accurately solve Equations (4.13) and (4.14). A
code which treats the pressure terms implicitly is also technically challenging, requiring sophis-
ticated algorithms such as the semi-implicit method for pressure linked equations (simple),
or the pressure-corrected with splitting of operators (piso) method (see, e.g., Pletcher et al.,
2013). Again I was unsuccessful, though in principle I believe this is a sound approach.

After assembling a suitable equation of state, I was able to write and test a code using the
finite difference method described in the previous section. In the remainder of this chapter, we
study some preliminary results from numerical calculations made with this code.

4.4 Convective and diffusive heating

In this section we consider how the core is heated by the initial surface spike in temperature.
The broad astrophysical question is the following: to what extent does the superfluid affect
the thermal evolution of the system? To answer this, we would like to gain some sense for the
relative importance of diffusive versus non-diffusive heating in different parts of the parameter
space.

Figure 4.1 shows, from left to right, the spatially averaged vp in the core 〈vcore
p 〉 (i.e. the spatial

average over the region r ≤ 5 km; flow towards the centre is taken to be positive), thermal
energy in the core Ucore, and central temperature as functions of K and κ1/κ2. The broad
trend is that higher velocities in the core correlate with larger Ucore. Consider firstly varying
κ1/κ2 (in this chapter we focus on the astrophysically relevant regime where κ1/κ2 ≥ 1). As
κ1/κ2 increases, Ucore and 〈vcore

p 〉 decrease. To understand this physically, we plot snapshots
of T (r) for various κ1/κ2 and weak coupling (Figure 4.2, top left panel). Higher diffusion
has the effect of smoothing out the temperature profile, increasing T (r = 0), but reducing
the magnitude of the convective term [∂(svp)/∂x] in the energy equation. There is therefore
a competition between the two modes of heating: very strong diffusion tends to quench the
convective term. The trade-off is such that the total thermal energy in the core decreases with
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Figure 4.1: Effect of the heat pulse on the core. Left to right: vp in m s−1 spatially averaged over
the region r < 5 km, the thermal energy in the core Ucore, in J/(mcorecp), and central temperature
T (r = 0) in K, as functions of κ1/κ2 and K, at t = 2 s.

increasing κ1/κ2 (Ucore decreases in the vertical direction in Figure 4.1). This suggests that
convection is important in the regime of small κ1/κ2.

We now consider the effect of the coupling coefficient. In Figure 4.1, 〈vcore
p 〉 decreases with K.

This is because the coupling acts to reduce |vp − vn| (Figure 4.2, bottom right panel). Recall
that the proton-electron fluid carries the entropy. Hence for small vp the heat is convected more
slowly, and Ucore is also smaller: by t = 2 s, a smaller fraction of the initial heat pulse has been
convected into the core (Figure 4.2, bottom left panel). We find therefore that Ucore, because
it depends on vp, decreases with K (Figure 4.1, middle panel). Finally, consider the central
temperature T (r = 0) (Figure 4.1, right panel). No part of the temperature wave reaches r = 0
by t = 2 s, so the T (r = 0) depends very weakly on K. Diffusion, on the other hand, affects
all parts of the domain instantaneously (the heat equation does not obey special relativity), so
that T (r = 0) increases with κ1/κ2.

4.5 Velocity lag at the crust-core boundary

In this section, we comment on a feature of the yellow velocity curve in Figure 4.2 (top right
panel): a thin layer at the base of the crust where vp is large. Figure 4.3 shows that the velocity
lag vpn = vp−vn also has a local maximum at the base of the crust, which implies that only the
proton-electron fluid (and not the superfluid) undergoes a large acceleration here. We expect
this from the equations of motion: only s and hence T (s, ρp) are sensitive to the conductivities,
and the governing equation for vp depends explicitly on s and T , whereas the equation for vn
does not. Referring again to Figure 4.3, the magnitude of vpn is strongly dependent on the
conductivity mismatch between the crust and the core, with larger mismatch giving rise to
larger vpn. On the other hand if the core conductivity is very low (κ1/κ2 < 1), there is no spike
in vpn in this layer.

Relative to the characteristic size of vpn, the lag at the base of the crust appears to depend on
the coupling: in Figure 4.3, the scaled size of the peak differs between the left and right panels.
To study the dependence on K, we quantify the lag relative to the characteristic flow speed
by the ratio of the red and blue curves in Figure 4.3, taken at the local maximum (of the red
curve) near r = 5: η(K) = vmax

pn (K,κ1/κ2 = 400)/vmax
pn (K,κ1/κ2 = 1). Table 4.1 shows η for a
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Figure 4.2: Snapshots of the temperature (first column) and velocity (second column) versus r, as
functions of κ1/κ2 (first row; K = 105 s−1) and K (second row; κ1/κ2 = 1), at t = 2 s.
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Figure 4.3: Velocity lag vp−vn for weak (left) and strong (right) coupling, at t = 2 s. The conductivity
mismatch causes a peak in the crust near r = 5. The peak near r = 1 corresponds to propagation of
the original heating wave. The dotted vertical lines show the location of the crust-core interface. The
dotted horizontal lines indicate vp − vn = 0.

Table 4.1: The relative size of the lag, η (defined in text), for different K.

K (s−1) 105 5× 105 106 5× 106 107

η 17.3 6.7 7.8 14.9 3.8

range of K. We find that η varies in a complicated way with K, though a visual inspection of
the graphs confirms that the peak is present for all K studied.

4.6 Conclusions

In this chapter we study how convective heating associated with the superfluid in an accreting
neutron star affects the transport of thermal energy into the interior. The model includes
coupling between the fluid elements, thermal diffusion, and a finite-temperature equation of
state. We describe (Section 4.2) a stable numerical scheme for implementing the model. Some
preliminary results are presented. We find (Section 4.4) that high thermal conductivity tends
to reduce the impact of the convective term in the energy equation, while convection dominates
when the conductivity is low. More energy is deposited in the core when the conductivity is
low. This implies, contrary to the conventional view, that convective heating may be important
in some situations. In Section 4.5 we show that a conductivity mismatch between strata in a
neutron star results in the proton-electron fluid attaining high flow velocities in a layer near
the boundary. This layer is present in all cases examined, though the coupling affects the size
of the velocities in a complicated fashion. Future work will focus on studying the formation of
this layer and clarifying its physical cause.



Chapter 5

Conclusions and future work

This thesis explores two problems relating to the interior of neutron stars: the collective dy-
namics of superfluid vortices, and the transport of thermal energy in accreting binaries. We
briefly summarise the main results below.

• In Chapter 2 we study the collective motion of superfluid vortices in the presence of
an annular pinning barrier by solving the time-dependent GPE. The goal is to simulate
stratified pinning in the neutron star crust. We find that vortices leave the system at
the same rate with and without a moat, but that they tend to accumulate in the moat
as the system evolves. We find power-law indices for the distribution of glitch sizes of
α = −0.02 and −0.81, and mean glitch waiting rates of λ = 0.47 and 1.44, with and
without a moat respectively. We therefore conclude that glitches are larger and less
frequent in the presence of a moat.

• Chapter 3 studies diffusive conduction following a deposition of heat in the neutron star
crust. We investigate heat transport where the thermal conductivity differs between an
inner and an outer region. We find that in the steady state the amount of energy deposited
in the core decreases with the core conductivity, given certain boundary conditions. We
show that steep temperature gradients can form as heat ‘piles up’ at the interface between
the regions.

• In Chapter 4 we extend these results by solving the hydrodynamic equations for a su-
perfluid neutron star. The goal is to investigate how thermal transport is affected by
non-diffusive conduction associated with the superfluid. We find that strong diffusion
can limit convective transport. We show that a large conductivity mismatch between the
crust and core creates a layer in which the proton-electron fluid velocity is significantly
higher than that of the superfluid neutrons.

The goal throughout is not to build realistic models which incorporate the full spectrum of rich
physics at play in the neutron star interior. Rather, we aim to understand how the problems
studied depend on certain key aspects of the physics. As such, the work provides a useful
foundation for future studies. In particular, the implications of asymmetric pinning barriers
for gravitational wave emission will be studied. The results in Chapter 4 and the effect on the
thermal evolution of large fluid velocities in the boundary layer will also be explored further.
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